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ABSTRACT
Performance monitoring of data centers provides vital information
for dynamic resource provisioning, fault diagnosis, and capacity
planning decisions. Online monitoring, however, incurs a variety
of costs—the very act of monitoring a system interferes with its
performance, and if the information is transmitted to a monitor-
ing station for analysis and logging, this consumes network band-
width and disk space. This paper proposes a low-cost monitor-
ing solution using compressive sampling—a technique that allows
certain classes of signals to be recovered from the original mea-
surements using far fewer samples than traditional approaches—
and evaluates its ability to measure typical parameters or signals
generated in a data-center setting using a testbed comprising the
Trade6 enterprise application. Experiments indicate that by using
the compressive sampling mechanism, the recovered signal ade-
quately preserves the spikes and other abrupt changes present in
the original. The results, therefore, open up the possibility of using
low-cost compressive sampling techniques to detect performance
bottlenecks and anomalies in data centers that manifest themselves
as abrupt changes exceeding operator-defined threshold values in
the underlying signals.

Categories and Subject Descriptors
C.4 [Performance of systems]: Design studies, modeling tech-
niques, fault tolerance

General Terms
Algorithms, Performance, Management, Reliability

Keywords
Performance management, online monitoring, compressive sam-
pling

1. INTRODUCTION
Online performance monitoring of both the IT infrastructure as

well as the physical facility is vital to ensuring the effective and ef-
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ficient operation of data centers [5, 9]. Examples of monitoring so-
lutions include the Tivoli Monitoring software from IBM for the IT
infrastructure [10] and the Data Center Environmental Edge from
HP that monitors temperature, humidity, and state of the power
network within the data center. The monitored information has a
variety of uses. It drives real-time performance management deci-
sions such as dynamic provisioning of IT resources to match the in-
coming workload, detection and mitigation of performance-related
hotspots/bottlenecks, and fault diagnosis. In the case of intermit-
tent problems that are hard to isolate, browsing back through his-
torical data can help identify and localize recurring problems af-
fecting the same portion of the IT infrastructure at different times.
The information also drives decisions of a longer-term nature: in-
telligent capacity planning that identifies resources that are over-
utilized (under-utilized) and aims to improve overall facility uti-
lization by adding (removing) appropriate resources.

We consider a server cluster wherein software-based sensors em-
bedded within the IT infrastructure measure various performance-
related parameters associated with the cluster—high-level metrics
such as response time and throughput as well as low-level metrics
such as processor utilization, I/O activity (disk reads and writes),
and network activity (packets sent and received). The information
collected by the sensors is transmitted over a network to a monitor-
ing station for data analysis and visualization. Online monitoring,
however, incurs a variety of costs. First, the very act of monitoring
an application interferes with its performance; if sensing-related
code is merged with the application code, this change may interfere
with the timing characteristics of the application or if sensors exe-
cute as separate processes, they contend for CPU resources along
with the original application. Transmitting the monitored data over
a network consumes bandwidth. Finally, logging the data for fu-
ture use (such as analysis aimed at capacity planning) consumes
disk space. So, when monitoring a large-scale computing system,
it is desirable to minimize the above-described costs, which is the
focus of this paper.1

Traditional methods of sampling signals use Shannon’s theorem:
the sampling rate must be at least twice the signal bandwidth to cap-
ture all the information content present in the signal. The theory of
compressive sampling, a recent development in signal processing,
states, however, that we can recover a certain class of signals from
the original measurements using far fewer samples than techniques
that use Shannon’s theorem [2–4, 7]. Compressive sampling con-
tends that many natural signals are sparse in that they have concise
representations when expressed in the proper basis. This property
is used to capture the useful information content embedded in the

1A preliminary version of this paper appeared as a poster in
the IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2012.
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signal and condense it into a small amount of data. In other words,
one can acquire these signals from the underlying system directly
in a compressed form. From a viewpoint of reducing the costs
associated with online monitoring, compressive sampling allows
for a very simple sensing strategy; rather than tailoring the sensing
scheme to the specific signal being measured, a signal-independent
strategy such as randomized sampling can be used, significantly
reducing the intrusion of monitoring on application performance.
Also, since signals are acquired directly in compressive form, the
network bandwidth required to transmit these few samples to the
monitoring station is reduced, and so is the hard-disk space required
to store them. When operators wish to analyze the original signal,
there is a way to use numerical optimization to reconstruct the full-
length signal from the sample set.

This paper investigates the feasibility of using compressive sam-
pling to measure signals typically generated in an enterprise-level
data center and compares data sampling, encoding, and recovery
strategies. We use IBM’s Trade6 benchmark, a stock-trading ser-
vice which allows users to browse, buy, and sell stocks, as our
testbed and subject it to a self-similar workload while measuring
these signals: response time, CPU utilization, and disk I/O activ-
ity in terms of sectors read and written. The measurements are
acquired directly in terms of fewer number of samples by encod-
ing the data in an appropriate representation basis. For our ex-
periments, we choose four representation bases—the Fourier basis,
and the Haar, Daubechies-2, and Daubechies-4 wavelet bases—to
determine the sparsity or conciseness of the data when encoded in
each of the basis functions. At the monitoring station, the process
of recovering the original signal from these samples is posed as a
linear programming problem and solved as such. We assess the
quality of the reconstructed signal using two performance metrics:
relative error that captures the normalized error between the origi-
nal and reconstructed signals, and receiver operating characteristics
(ROC) that characterizes the number of spikes that can be detected
using the reconstructed signal.

A major benefit offered by compressive sampling in the con-
text of data center operations is reducing the overhead of gener-
ating, storing, and using performance log files for offline analysis
tasks such as capacity planning, bottleneck detection, and long-
term trend forecasting. When analyzing the data, if the opera-
tor wishes to detect performance-related bottlenecks or anomalies
that manifest themselves as spikes or abrupt changes in the sig-
nal exceeding some nominal threshold value, then the signal re-
constructed via compressive sampling must preserve the spikes ob-
served in the original trace. This performance is quantified by the
ROC curve and in this regard compressive sampling performs quite
well for all signals considered in this paper. By selecting the thresh-
old value appropriately, a hit rate of 93% can be achieved with
a false alarm rate of only 0.1%, using about 30% of the samples
from the original signals. The results reported in the paper open up
the possibility of using compressive sampling as a low-cost online
monitoring tool in data centers, especially for anomaly detection
and long-term capacity planning.

The paper is organized as follows. Section 2 describes our ex-
perimental testbed. Section 3 discusses the compressive sampling
of signals generated by the testbed and Section 4 presents experi-
mental results evaluating the performance of this sampling scheme
in recovering the original signals. Section 5 discusses related work
and Section 6 concludes the paper.

2. EXPERIMENTAL SETUP
Fig. 1 shows the computing system used in our experiments,

comprising three servers networked via a gigabit switch. The sys-

Figure 1: The overall system architecture hosting the Trade6
service.

tem for server hosts IBM’s Trade6 benchmark, a stock-trading ap-
plication which allows users to browse, buy, and sell stocks. So,
users can perform dynamic content retrieval as well as transaction
commitments, requiring database reads and writes, respectively.
The application logic for Trade6 resides within the IBM WebSphere
Application Server, which in turn is hosted by the virtual machine
on the server Demeter within the application tier. Virtualization
of this system is enabled by VMWare’s ESX Server 3.5 running a
Linux RedHat kernel. The operating system on the virtual machine
is the SUSE Enterprise Linux Server Edition. The database com-
ponent is DB2 which is hosted on the server Ares running SUSE
Enterprise Linux. The database maintains 10, 000 user accounts
and information for 20, 000 stocks.

We use Httperf, an open-loop workload generator, to send a mix
of browse, buy, and sell requests to the Trade6 application [11].
Based on available evidence on web access traffic patterns [6], the
workload follows a self-similar distribution as shown in Fig. 2(a),
with an arrival rate of 100 requests per second with a 50/50 mix
of buy to browse transactions. Every 100 milliseconds, we mea-
sure the average end-to-end response time incurred by the requests
(response_time). At the database tier, we collect data every 30 sec-
onds corresponding to CPU utilization (cpu_util), and the number
of disk sectors read and written (read_activity and write_activity).
Fig. 2(b) shows a sample set of parameters/signals collected during
an experimental run of the system.

3. COMPRESSIVE SAMPLING OF SYSTEM
PARAMETERS

This section describes how to acquire the signals of interest from
the testbed directly in a compressed form. First, we familiarize the
reader with the two key conditions underlying compressive sam-
pling: sparsity and incoherence. The first condition applies to the
signals themselves and the second condition affects the way we
sample these signals. We then discuss how the original signal can
be recovered from a small set of samples.

3.1 Sparse Representation of Signals
Assume that the data to be sampled d is a vector of length N

and its representation in some basis B is x. In other words, d(t) =∑N
i=1 xibi(t) = Bx, where B = [b1, b2, . . . , bN]. For example, if B

is selected to be the Fourier basis, the elements of the vector x are
Fourier coefficients corresponding to the signal d. Also, if at most
S entries in x are nonzero, then x is called an S−sparse vector and
d is said to be sparsely represented in the basis B.

Using the data collected from our testbed, we now aim to find
a basis B in which this data can be most concisely represented.
We consider the following four basis functions: the Fourier basis,
the Haar wavelet basis, the Daubechies-2 (or db2) wavelet basis,
and the Daubechies-4 (or db4) wavelet basis [14]. The waveforms
corresponding to these functions are shown in Fig. 3. These four
bases are common for time-frequency analysis on time series data:
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Figure 2: (a) The self-similar workload presented to the com-
puting system shown in Fig. 1; (b) the various signals collected
from the system during an experimental run.

Fourier basis is the traditional tool for analyzing the frequency
characteristics of a signal while wavelet bases show signal char-
acteristics in both time and frequency domains. Considering the
advantages of using wavelets to capture sharp or abrupt changes in
the signal, we focus on three commonly used wavelets: the Haar,
the simplest wavelet that captures discontinuities in the data; db2, a
more complex waveform with more similarity to the data collected
from the testbed; and db4, a wavelet that also shows similarity with
our data but has a longer waveform, leading to better frequency
resolution. A full introduction to the waveforms corresponding to
these wavelets may be found in [13].

We analyze the above-described basis functions in terms of how
concisely they encode the data collected from our system. We first
perform a signal transform on each data set to find the correspond-
ing coefficients within the chosen basis and arrange them in de-
creasing order of their magnitude. Then, we use only the first n
coefficients, 1 ≤ n ≤ N, set all the other coefficients to 0, and re-
construct a new signal d̃(n). A relative-error metric captures the
difference between the original and reconstructed signals as

e(n) =
‖d̃(n) − d‖
‖d‖

. (1)
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Figure 3: The waveforms corresponding to the four basis func-
tions considered in this paper.

Finally, we examine how this relative error changes as the value
of n is increased. For each set of data, we repeat the analysis for
each of the four basis functions. The basis in which the relative
error decreases to zero fastest represents the signal most concisely.

Fig 4 shows that the relative error, when using the Haar wavelet,
decays most quickly for cpu_util and read_activity signals and that
the representations of response_activity and write_activity are not
sparse enough within any of the selected bases. The relative er-
ror achieved by the Fourier basis is the worst, especially for the
read_activity and cpu_activity signals. This is because these data
sets exhibit marked discontinuities with numerous spikes, and thus
their representation in the Fourier basis is less concise than those
in other bases. For the same reason, we find that the Haar and db2
wavelets represent cpu_util and read_activity quite concisely. Note
that read_activity is the sparsest signal in that it requires the small-
est percentage of the coefficients to reconstruct the signal within a
small relative error, achieving relative error of less than 0.1% when
using only 18% coefficients in Haar wavelet basis; cpu_util is also
sparse since it can be reconstructed with relative error around 2%
using 25% of the coefficients under all bases except for Fourier; for
the response_time and write_activity signals, we find that more than
50% of the coefficients are needed to reconstruct them with small
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(a) Relative error for the response_time signal.
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(b) Relative error for the cpu_util signal.
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(c) Relative error for the read_activity signal.
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(d) Relative error for the write_activity signal.

Figure 4: Plots showing the change in relative error for the response_time, cpu_util, read_activity and write_activity signals as a
function of the percentage of coefficients used during reconstruction.

Table 1: Percentage of coefficients needed to maintain the rela-
tive error within 5%.

Data Haar db2 db4 Fourier
response_time 62.5% 51.6% 58.9% 68.8%
cpu_data 2.7% 8.4% 7.5% 21.8%
read_data 19.9% 27.0% 33.9% 99.1%
write_data 66.4% 75.4% 66.6% 72.4%

relative error of 5%, irrespective of the basis. Table 1 summarizes
the percentage of coefficients needed to maintain the relative error
within 5% for each of the bases.

Section 4 quantifies the effect of using the different bases, in
terms of relative error, when the original signal is reconstructed
using the samples obtained via compressive sampling. We also use
another metric, ROC, in Section 4 to characterize the number of
spikes that can be detected in the reconstructed signal.

3.2 Incoherent Sampling of the Signal
Given two N-dimensional bases Ψ and Φ, the coherence between

these bases is defined as the largest coherence between any two

basis vectors in Ψ and Φ, and is given by

µ(Ψ,Φ) =
√

N max
1≤k, j≤N

∣∣∣〈φk, ψ j〉
∣∣∣ , (2)

where 〈φk, ψ j〉 is the dot product of vectors φk and ψ j.
Usually, the coherence between two bases lies in the range of[

1,
√

N
]

and when the value of coherence is small we consider the
two bases to be uncorrelated or incoherent. When the sensing basis
and the representation basis have a small coherence value, and thus
uncorrelated, then a signal that is represented as a spike in one basis
will be represented as a spread-out waveform in the other. For ex-
ample, the Dirac delta basis and Fourier basis have a coherence of
one; a signal shown as a spike in the Dirac basis is spread out when
represented using the Fourier basis. This property allows us to cap-
ture the complete information present in the original data using a
small number of samples obtained by incoherent sampling.

As a sampling strategy to collect measurements from our testbed,
we choose Gaussian random matrices that have a low coherence of√

2 log N relative to any representation matrix with high probabil-
ity. Table 2 shows the average coherence between an M × N Gaus-
sian sensing basis and the various representation bases of interest
where N is the length of the input data and M is the desired number
of samples. As expected, the coherence values are quite low.
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Table 2: Average coherence between an M × N random Gaus-
sian sensing basis and the different representation bases when
N = 2048.

Representation basis Haar db2 db4 Fourier
M = 0.1N 3.67 4.81 4.77 4.82
M = 0.3N 3.81 5.05 5.04 5.07
M = 0.5N 3.90 5.11 5.12 5.10

To collect M samples, we generate an M × N Gaussian random
matrix G as the underlying sampling matrix. Elements in the matrix
are independently chosen from a standard Gaussian distribution and
the rows are orthonormalized such that the rows have unit norm and
are orthogonal to each other. To obtain the samples from the input
data, we simply multiply this matrix G by the vector of data d.

For example, assume the data to be sampled is an 8 × 1 vector

d =


B1,1 B1,2 · · · B1,8

B2,1 B2,2 · · · B2,8
...

...
. . .

...
B8,1 B8,2 · · · B8,8




x1

x2
...

x8

 = B × x,

where B is an 8× 8 matrix corresponding to the Haar wavelet basis
and x is the representation of d in the Haar basis. Suppose we wish
to obtain a 4 × 1 vector of samples y. The data is multiplied with a
Gaussian matrix G such that

y =


G1,1 G1,2 · · · G1,8

G2,1 G2,2 · · · G2,8

G3,1 G3,2 · · · G3,8

G4,1 G4,2 · · · G4,8




d1

d2
...

d8


= G × d = G × B × x = A × x,

where A = G × B is a 4 × 8 matrix.
Fig. 5 shows the implementation of compressive sampling in our

system in which the incoming signal d is acquired directly in a
compressed form y. When a new data item d(t) arrives at time t,
it is multiplied by the entries in the sampling matrix G( j, t), j =

1, . . . ,M, and the partial products are accumulated into y( j). After
a period of length N×T , where T is the sampling period, the current
values of y( j) are sent out as the M samples and then reset back to
zero. Effectively, y( j) =

∑M
j=1 G( j, t)d(t), where t = 1, . . . ,N, and

thus y = G × d.

3.3 Recovering the Original Signal
The process of incoherent sampling gives us a set of values y =

G × d = G × B × x = Ax, where A = G × B. To reconstruct the
original data d, we must solve this inverse problem: given a vector
y of length M and matrix A of size M × N where M � N, find a
sparse vector x̃ of length N such that y = Ax̃. In other words, we
are looking for x̃ as a solution to

min
b∈R

‖b‖l0 subject to: y = Ab, (3)

where ‖b‖l0 is the number of nonzero entries in b. This problem is
under-constrained since the matrix A has more columns than rows;
there are infinitely many candidate signals b for which Ab = y.
The problem of minimizing the l0 norm is a computationally ex-
pensive nonlinear optimization problem. So, one of the following
classes of reconstruction algorithms is typically used for compu-
tational efficiency: basis pursuit and iterative algorithms based on
hard thresholding pursuit.

The basis pursuit technique solves the problem in (3) by mini-
mizing the l1 norm, which is the linear programming problem posed

Figure 5: Implementation of compressive sampling in our sys-
tem that takes N data items over a time period as input and
returns M samples.

as follows:

min
b∈R

‖b‖l1 subject to: y = Ab. (4)

Reconstruction of the original signal using (4) is considered to be
exact with probability exceeding 1 − δ, where δ is a very small
constant, if the number of samples

M ≥ Cµ (Ψ,Φ)2 S log
N
δ
, (5)

where C is some positive constant [1]. The direct consequence
of (5) is that when the coherence between the representation and
sensing bases, µ, as well as the sparsity metric, S , is small, we need
only a few samples to recover the original signal exactly with high
probability.

In iterative algorithms, the problem in (3) is solved by iteratively
selecting an sparse vector b based on the previous selection. In
our work, we use a method termed the hard thresholding pursuit
previously proposed by Foucart [8]. Let the initial value of the
vector be b = 0 and let the S−sparse vector selected at step n be
bn, the iteration scheme involves two steps:

In+1 = {Indices of S largest entries in bn + A∗(y − Abn)}

bn+1 = arg min{‖y − Ab‖2, supp(b) ⊆ In+1}

The iterations continue until In+1 = In. This algorithm has been val-
idated to perform faster than other threshold-based methods such as
orthogonal matching pursuit.

4. PERFORMANCE EVALUATION
This section evaluates the performance of compressive sampling

in recovering the various signals obtained from the testbed using
the Fourier basis and the Haar, db2, and db4 wavelet bases. The
goal of these experiments is to determine the most suitable repre-
sentation basis to use when reconstructing the original signal.

4.1 Performance Metrics
We use the following metrics to assess the quality of the signal

recovered from its sampled form.
Relative error. This metric (defined in Section 3.1) expresses the
normalized error between the original and recovered signals.
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(a) Relative error achieved by the recovered response_time sig-
nal.
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(b) Relative error achieved by the recovered cpu_util signal.
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(c) Relative error achieved by the recovered read_activity signal.
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(d) Relative error achieved by the recovered write_activity signal.

Figure 6: The relative error achieved by the recovered signals as a function of the number of samples used during the reconstruction.

Receiver operating characteristic (ROC). Considering the number
of spikes present in the cpu_util, read_activity, and write_activity
data sets, we use the ROC metric to characterize the number of
spikes that can be detected using the reconstructed signal. We de-
fine a hit as follows: at time t within the original and recovered
signals, a spike occurring in the recovered signal matches a similar
spike in the original signal. We define a false alarm as follows: at
time t, a spike occurring in the recovered signal has no match in the
original signal. The ROC plots the hit rate against the false alarm
rate. The ROC becomes relevant in situations in which it may not
be essential for compressive sampling to recover the original signal
exactly, such as when the operator is mainly interested in detect-
ing performance bottlenecks, hot spots, or anomalies affecting the
computing system, some of which manifest themselves as spikes or
abrupt changes in the signals being monitored.

4.2 Characterizing Signal Recovery via Rela-
tive Error

Figure 6 summarizes the relative errors achieved by the various
representation bases when recovering the signals as a function of
the percentage of samples used. Figure 6(a) shows the relative er-
ror achieved when reconstructing the response_time signal. Even
when 50% of the samples are used, the relative error is over 40% for

all the bases. This result is expected since, as shown in Fig. 4(a),
none of the bases can concisely represent the signal in terms of
the number of required coefficients. For example, we find that at
least 50% of the coefficients are needed in the db2 basis to cap-
ture most of the signal energy, and so the sparsity of the signal in
db2 basis is more than 0.5N, where N is the length of the signal.
According to (5), we require 4 × S × µ2 (Φ,Ψ) samples for exact
reconstruction. For example, when using the db2 wavelet as the
representation basis Ψ, the coherence µ (Φ,Ψ) is around 5.1 (from
Table 2) and to reconstruct response_time exactly, we need around
4×0.5N×5.12 = 52.02N samples—a sample size fifty times larger
than the original data. When response_time is represented using
the other bases, the sample size required for exact reconstruction
is even larger. This demonstrates why compressive sampling is not
very effective on data sets that cannot be represented as a sparse
vector within a certain basis.

Figure 6(b) summarizes the relative error achieved by the re-
covered cpu_util signal; when 20% of the samples are used, the
relative error is less than 4% using the wavelet bases. The signal
is quite sparse and when represented in any of the wavelet bases,
cpu_util can be reconstructed with less than 5% relative error us-
ing at most 20% of the wavelet coefficients. Furthermore, if we
approximate the sparsity of cpu_util in the Haar wavelet basis by
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0.02N and use 3.67 as the coherence value, then we require about
4× 0.02N × 3.672 = 1.13N samples for exact signal reconstruction
with high probability. However, we find a better result from our
experiment: when 15% of the samples are used, the relative error
corresponding to each of the three wavelet bases falls below 3%.

Figure 6(c) shows that when 50% of the samples are used, the
relative error achieved by the reconstructed read_activity signal is
around 20% under the wavelet bases. The relative error never falls
below 100% when the Fourier basis is used, implying that this basis
is not suitable for the compressive sampling of read_activity. Fig-
ure 6(d) summarizes the relative error achieved for the write_activity
signal. Under the db4 or Haar wavelets, the relative error falls be-
low 25% when about 35% of the samples are used. Conversely,
even when 50% of the samples are used, the relative error is around
25% for the db2 wavelet basis and 40% for the Fourier basis. The
result for the Fourier basis is as expected. Figure 4 indicates that
a very large percentage of the Fourier coefficients are needed to
maintain a 5% relative error and the coherence between our sam-
pling waveform and the Fourier basis is about 5.1 (from Table 2).
We find that the sparsity of write_activity under the Fourier basis
is about 0.75N and for an exact signal recovery, we need a sam-
ple size 4 × 0.75N × 5.12 = 78.03N; that is, even a sample set the
same size as the original data is not sufficient for reconstruction.
So, write_activity is not appropriate for compressive sampling us-
ing the Fourier basis. We find similar results with the Haar, db2,
and db4 wavelet bases as well. As discussed in Section 3.1, more
than 70% of coefficients are necessary to maintain a 5% relative
error using these bases; the sparsity of write_activity when repre-
sented in these bases is at least S = 0.7N. Since the coherence
between the Gaussian sampling matrix and the Haar, db2, or db4
bases is at least 3.67 (from Table 2), the sample size required for
exact recovery has to be 4 × 0.7N × 3.672 = 37.71N. As a result,
we can conclude that write_activity is less appropriate for compres-
sive sampling using the Haar, db2, or db4 bases—at least for exact
recovery.

We summarize the results as follows: for the data sets considered
in this paper, the Haar wavelet basis achieves, on average, the best
performance in terms of the relative error metric. The Fourier basis
performs well for response_time and cpu_util, but is the worst for
read_activity and write_activity signals. If the Haar wavelet is used
as the representation basis, the basis vector for the cpu_util sig-
nal is sparser than those for the response_time, read_activity and
write_activity signals. Fig. 7 shows the performance of the Haar
basis as the sample size is varied; when 30% of the samples are
used, the relative error is nearly 2.5% for the recovered cpu_util
signal. For the read_activity and write_activity signals, however,
we require at least 50% of the samples to lower the relative error
to 15% and the relative error for the response_time signal is almost
43% even if we use 50% of the samples.

4.3 Characterizing Signal Recovery via Receiver
Operating Characteristics

As noted earlier in the paper, there are situations in which it is
not essential for compressive sampling to recover the original sig-
nal exactly. If the operator is mainly interested in detecting perfor-
mance bottlenecks, hot spots, or anomalies affecting the computing
system that manifest themselves as spikes or abrupt changes in the
signals being monitored, it is more important that the reconstructed
signal preserve these characteristics.

Fig. 8 shows the original and recovered signals for write_activity,
cpu_util, and read_activity, overlayed on each other. The signals
are mostly limited to narrow bands of values and compressive sam-
pling does an adequate job of reconstruction using about 30% of the
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Figure 7: The relative error achieved by the Haar wavelet basis
for the various data sets as a function of the number of samples
used for signal reconstruction.

Table 3: False alarm and hit rates associated with different
threshold levels for the reconstructed write_activity and cpu_util
signals.

Data read_activity write_activity cpu_util
Threshold level 6 132 43.8%
False alarm rate 0.05 0.05% 0.05%
Hit rate 94.64 97.59% 93.96%

original signal when using Haar wavelet basis even though the rel-
ative error are larger than 15% for read_activity and write_activity.
More importantly, the recovered signal preserves the spikes found
in the original quite well, preserving the abrupt bursts in the read_activity
and write_activity signals, and sudden (steep) decreases in cpu_util.
Figs. 9(a), 9(b) and 9(c) graph the ROC curves for the read_activity,
write_activity and cpu_util signals reconstructed under the differ-
ent representation bases. The plots are generated using 30% of the
samples from the original write_activity, write_activity and cpu_util
signals, respectively. We change the threshold level that defines a
spike, and for each threshold obtain and plot a pair of values: the
hit rate and the corresponding false alarm rate.

Table 3 lists the false alarm rates and hit rates with their corre-
sponding threshold-level settings for the reconstructed read_activity,
write_activity and cpu_util signals. The original signals were en-
coded using the Haar wavelet basis. The performance, in terms of
ROC, indicates that compressive sampling still helps to reconstruct
the spikes of interest. For example, from the viewpoint of detecting
anomalies affecting write_activity, a hit rate of more than 95% can
be achieved with a corresponding false alarm rate of less than 0.1%
by setting the threshold to about 132 sectors written.

Generally, both the false alarm rate and the hit rate should de-
crease as the threshold is increased since fewer false spikes occur
in the reconstructed signal. However, we see in Fig. 9(a) that the
hit rate corresponding to the db2 basis increases as the threshold
is increased whereas the corresponding false alarm decreases from
0.2% to 0.05%. We see a similar result as well for the db4 basis in
Fig. 9(b) and for all the bases in Fig. 9(c). To explain this unusual
result, we examine the reconstructed signal for the read_activity
when using db2 in conjunction with the original signal (shown in
the overlay plot in Fig. 10). We find that spikes larger than 7 in
the read_activity signal are all detected but under-estimated in the
reconstructed signal, i.e., the reconstructed spikes match those in
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0 500 1000 1500 2000
35

40

45

50

55

60

Time in minutes

c
p

u
 u

ti
liz

a
ti
o

n

cpu_util, re = 0.019008, p = 30

 

 

original

reconstructed

(c) Overlay of the original and recovered cpu_util signals.

Figure 8: Overlay plots comparing the recovered read_activity,
write_activity and cpu_util signals using Haar wavelet basis
with the originals. Compressive sampling preserves the spikes
present in the original signals quite well.

the original signal but have smaller values. Besides, we find that
smaller spikes in the original signal within the range [1, 7] are
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(b) ROC curve generated by the recovered write_activity signal.
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Figure 9: Plots showing the ROC curves for the read_activity,
write_activity and cpu_util signals reconstructed under the
four representation bases.

not detected and there are small spikes in the reconstructed sig-
nal without a match in the original signal. For these reasons, as
the threshold is increased within the [1, 7] range the number of de-
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Figure 10: Overlay plot comparing the recovered read_activity
signal using db2 wavelet basis with the original. Spikes present
in the original signals are underestimated in the reconstructed
signal.

Table 4: Execution Time (in milliseconds) for the incoherent
sampling process as a function of sample size N.

Percentage of Samples 10% 20% 30%
N = 1024 0.14 0.29 0.38
N = 2048 0.52 0.96 1.40
N = 4096 1.90 3.90 5.50

Table 5: Execution Time (in seconds) incurred by the signal
recovery process as a function of sample size N.

Percentage of Samples 10% 20% 30%
N = 1024 0.3 0.3 0.6
N = 2048 0.9 1.8 1.9
N = 4096 5.1 9.1 11.7

tected spikes that are above the threshold stays the same, whereas
the number of spikes above the threshold in the original signal de-
creases. As a result, the hit rate increases. Furthermore, as the
threshold increases within this range, there are fewer reconstructed
spikes above the threshold without a match in the original and the
false alarm decreases as expected. The unusual trend in the other
plots can be explained similarly. This explanation also shows the
importance of selecting both the proper basis for compressive sam-
pling and threshold values to detect anomalies.

4.4 Computational Complexity
We quantify the execution-time overhead incurred by both the

sampling and signal recovery processes as a function of sample
size. The algorithms were implemented in MATLAB and executed
on a server equipped with an AMD Athlon II 3.0 GHz processor.
For presentation purposes, we denote the length of original data
to be sampled as N; the length of compressed samples as M; and
the average execution time incurred by the sampling and recovery
processes as ts(N,M) and tr(N,M), respectively.

The execution time for incoherent sampling is summarized in
Table 4 as a function of sample size. Generally, this process is not
time-consuming: when N = 4096 (corresponding to approximately
48 hours of monitoring time in the case of cpu_util, read_activity,
and write_activity signals) and when we wish to compress this data
to 30% of its original size (or M/N × 100% = 30%) the running

time is about 6 ms. The average value for ts(N, 2M)/ts(N, M) is
1.99 and the average value for tr(N, 3M)/tr(N,M) is 2.77, which
indicates that the execution time grows sublinearly with M. As-
sume the execution time for the sampling and the recovery to be
exponential with N as the exponent,

ts(N,M) = cs × Nr
s ,

tr(N,M) = cr × Nr
r ,

where the values for cs and cr depend on M. Then the value for
order rs and rr can be calculated by

cs =
log(ts(2N,M)) − log(ts(N,M))

log(2)
.

cr =
log(tr(2N,M)) − log(tr(N,M))

log(2)
.

From Table 4, we find the average value for order cs is 1.89, indi-
cating that the running time grows sublinearly with N2. Since the
running time increases linearly as M/N increases and quadruples
as N is doubled, the computational complexity associated with in-
coherent sampling is O(N2 M). In our implementation, the process
of incoherent sampling is simply the multiplication of an M × N
matrix with an N × 1 vector, and the complexity is actually M ×(
N ×multiplication + (N − 1) × addition

)
= O(NM).

The algorithm used for the signal recovery is a recent iterative al-
gorithm termed Hard Thresholding Pursuit proposed by Foucart [8].
Table 5 lists the execution times incurred by the recovery algorithm
as a function of N. The average value for tr(N, 2M)/tr(N,M) is
1.59 and for tr(N, 3M)/tr(N,M), it is 2.14, indicating that the run-
ning time grows sublinearly with M; the average value for order
cr is 2.22, showing that the running time grows linearly with N2.
Therefore, the computational complexity associated with the signal
recovery process is O(N2 M).

5. RELATED WORK
To the best of our knowledge compressive sampling has not been

perviously studied as a technique for monitoring the performance
of enterprise computing systems. It has recently been validated
for monitoring fine-grained processor performance [12] and for the
detection of Internet traffic anomalies [15].

Tuma et al. study the applicability of compressive sampling to
fine-grained monitoring of processor performance and propose the
method as a means of simplifying the complex processes of sens-
ing and transferring signals related to micro-architecture perfor-
mance [12]. The authors evaluate the performance of compressive
sampling on signals representing one or more micro-architectural
counters within a processor core, and show that compressive sam-
pling can recover these signals if one can identify the bases in
which the signals can be sparsely represented. Their approach bears
some similarity to our work, but the measurements are obtained
from hardware counters inside various micro-architectural compo-
nents of the processor and the evaluation is limited to a signal-to-
noise (SNR) metric—same as the relative error metric used in this
paper. Our data is obtained from a server platform and includes
both high-level performance metrics (response time) as well as low-
level ones (CPU utilization and disk I/O activity). We also evaluate
compressive sampling in terms of the ROC metric to evaluate how
well spikes can be recovered within the reconstructed signal. Be-
sides, rather than using traditional algorithms such as Orthogonal
Matching Pursuit for signal recovery as in [12], we use a faster
iterative Hard Thresholding Pursuit algorithm originally proposed
in [8].
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In the area of computer network monitoring, Zhang et al. use the
spatial-temporal compressive sampling framework for traffic ma-
trix interpolation [15]. This technique uses an algorithm called
sparsity regularized matrix factorization that uses both the global
low-rank property of traffic in a network and spatio-temporal prop-
erties of the local traffic, and the authors focus on building a model
that includes both spatial and temporal properties of the underly-
ing traffic matrix. They claim that the normal component of the
traffic matrix can be captured via a low-rank matrix, and try to de-
termine a low-rank matrix that best estimates the original traffic
matrix. Their work shows that over 90% of the missing values in
traffic matrix can be inferred with reasonable accuracy using com-
pressive sampling.

Finally, it could be argued that any number of existing com-
pression algorithms, especially lossless ones such as bzip2 and
DEFLATE, could be used to condense the information monitored at
the data center before writing to disk. However, massive data acqui-
sition followed by compression is extremely wasteful of computing
and memory resources. Compressive sampling, on the other hand,
enables us to acquire data directly in compressed form.

6. CONCLUSIONS
This paper has proposed and evaluated a low-cost monitoring

solution for data centers based on the concept of compressive sam-
pling that allows certain classes of signals to be recovered from the
original measurements using far fewer samples than traditional ap-
proaches. Using the Trade6 application as our testbed, we showed
how to acquire measurements corresponding to response time, CPU
utilization, and disk I/O activity directly in a compressed form, and
how to reconstruct the full-length signal at the monitoring station
using a few number of samples. We have experimented with four
different basis functions to determine the conciseness of the data
when encoded in each of these functions and assessed the result-
ing quality of the reconstructed signal. The performance of com-
pressive sampling is quite promising in terms of the ROC—the re-
covered signal adequately preserves the spikes and other abrupt
changes present in the original signal. By selecting the threshold
value appropriately, a hit rate of 93% can be achieved with a false
alarm rate of less than 0.1%.
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